He horn of an auto operates on demand 99% of the time. Assume each time you hit the horn, it works or fails in?

He horn of an auto operates on demand 99% of the time. Assume each time you hit the horn, it works or fails in?

The horn of an auto operates on demand 99% of the time. Assume each time you hit the horn, it works or fails independently of all other times.(a) How many times do you expect to be able to honk the horn with 75% probability of not having any failures.(b) What is the expected number of times you hit the horn before the tenth failure?

тн

Show that if T has the Weibull (¦E, ¦A) distribution with the following density: f (t) = ¦E¦At¦A1 e¦Et¦A(t > 0),where ¦E > 0 and ¦A > 0 then T ¦A has an exponential ¦E distribution. [b (10 points)]. Show that if U is uniform (0, 1) random variable then T = (¦E1 log U )1/¦A has a Weibull (¦E, ¦A) distribution. 3. Let Y be the minimum of 4 independent random variableswith uniform distribution on (0, 1) and let Z be their maximum. Find: [a (10 points)]. P (Z?U 3/4|Y ?Y 1/4). [b (10 points)]. P (Z ?U 3/4|Y?U 1/4). 4. Insurance claims arrive at an insurance company according to a Poisson process with rate ¦E. The amount of each claim has an exponential distribution with rate independently of times and amounts of all other claims. Let Xt denote the accumulated total of claims between time 0 and time t. Find simple formulae for [a (3 points)]. E(Xt ). 2 [b (5 points)]. E(Xt ). [c (5 points)]. SD(Xt ). [d (7 points)]. Corr(Xt , XS ) fort < s. 5. Let X1 , X2 , X3 , X4 be independent random variables with distribution Exp(¦E). Let Xmin denote the minimum of the X??s andXmax denote the maximum. [a (10 points)]. For a a, Xmax < b). [b (10 points)]. What is the joint density of Xmin andXmax ? 6. Let X and Y be the scores of the midterm and nal exams. Suppose that E[X] = 60 and E[Y ] = 70 and that all scores are between 0 and 100. [a (8 points)]. How can you upper bound P [X ?U 40, Y ?Y 90]? Is your bound optimal? [b (8 points)]. Suppose that in addition you are also given that (X, Y ) is bivariate normal with ¦N = 0.9 and SD(X) = SD(Y ) = 10. Find E[X|Y ?Y 90] and bound usingMarkov inequality P [X ?U 40|Y ?Y 90]. [c (6 points)]. Use the previous bound to obtain anupper bound on P [X ?U 40, Y ?Y 90] when (X, Y ) is bivariate normal with ¦N = 0.9 and SD(X)= SD(Y ) = 10.

Ask

insurance

Popular Q&A

What happened to the free market system?
Never existed, conservative rhetoricCapitalism is defined as a good idea rising to the top, bringing the one who thought it to the top with it.Even if one ignores the fact that history- including American History- shows that when a good idea makes it to the top its usually because someone with...

Im Looking for cheap auto insurance in NJ?
insurance is local/search auto insurance in your zip code and start calling/must be at least a hundred insurance companies in nj and you only contacted 4

What are the pros and cons of opening up a car Insurance business in California?
Pros:Everyone who owns a car needs to have insurance so there is a huge market.Decent commissions.Cons:You can't just open up a car insurance business offering any insurance company you choose. You must be contracted with each carrier. Companies don't simply hand out agency contracts to anybody...

Will florida suspend my liscense if I cancel my sr22 insurance that ohio requires me to carry?
If Florida has not specifically required you to carry SR22 insurance, then they should not cancel your license.That being said, you had better be 100% sure that you did not sign something saying you were going to continue to carry it. It has been a while since I have been on MyFlorida.com...